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ABSTRACT
We examine approaches to the incorporation of anatomic
structural information into the inverse problem of fluores-
cence molecular tomography (FMT). Using an appropriate
relationship between anatomic and reconstruction image res-
olution, we build an inverse problem parameterized along
the anatomical segmentation. These values serve as the basis
for two new regularization techniques. The first regular-
izes individual voxels in proportion to the importance of
the underlying segments in reducing the residual error. The
second is based on a well known statistical interpretation of
Tikhonov-type regularization in which the statistical prior is
defined implicitly as the solution to a PDE whose structure
is based on the anatomical segmentation. Results are shown
using both techniques for a simulated experiment within the
chest cavity of a mouse.

Index Terms— Inverse Problems, Fluorescence, Optical
Tomography

1. INTRODUCTION
In recent years, in-vivo tomographic imaging of fluorescent
probes has been the subject of significant research [1]. Using
a wide range of highly specific targeted probes, fluorescence
molecular tomography (FMT) has enabled in-vivo study of
functional activity and important molecular biomarkers. In
addition, the ability to generate three dimensional maps of
fluorochrome concentration gives FMT a distinct advantage
over more widely available planar techniques. Rather than
simply displaying raw or processed CCD images, FMT uses
physical models of light propagation in tissue to internally lo-
calize and quantify fluorochrome concentrationswith a higher
degree of accuracy. Recent advances in instrumentation have
led to non-contact CCD based imaging techniques capable of
multi-angle data collection in a free space geometry [2]. By
collecting data from multiple projections, these systems are
able to offer an improved resolving capability as compared to
existing single projection systems.
Regardless of improvements in system design, FMT, as

with all imaging techniques based on the collection of dif-
fuse light, suffers from a low spatial resolution. This is not a
defect in the imaging systems themselves but rather a result

inherent in the underlying diffusion physics. To help com-
pensate for this low resolution, it has been suggested that a
priori structural information be incorporated into the image
formation process [3, 4]. This anatomical information, avail-
able from imaging modalities such as X-ray CT or MRI, is
then used both in computing more accurate diffusion models
and in constructing an appropriate regularization term for the
fluorescence tomography problem. With the expected arrival
of dual-modality imaging systems, corresponding advances in
data processing and inversion techniques are needed to make
optimal use of this improved data.

Existing computational methods for multi-modal data fre-
quently label reconstruction voxels according to tissue type,
and use this information to construct relationships among
voxels within each tissue [3, 4]. Traits such as mean value
and smoothness can then be controlled on a tissue by tissue
basis, which leads to increased precision in the final recon-
structions. There are, however, two issues for which these
methods do not typically account. The first is that structural
information is usually available at a much higher resolution
than is used for the inversion of diffusion data. Particularly
along boundaries, each individual voxel at the FMT scale po-
tentially intersects two or more regions at the structural scale.
In the reconstruction, errors near internal tissue boundaries
could result from incorrect labeling of those voxels. Second,
by establishing relationships only within each individual re-
gion these methods assume that the assigned segmentation
is absolute truth, and that voxels in neighboring regions are
unrelated to one another. While improvements in dual-mode
data collection systems will reduce segmentation error, the
assumption of isolated physical regions can easily be violated
when imaging fluorescence. Taking place on the molecu-
lar level, this activity is not necessarily constrained by large
scale physical anatomy. For certain applications, such as
studying the spread and development of tumors, the features
of greatest interest may in fact be the locations in which
the fluorochrome distribution deviates from the anatomical
structure, acting as an early indicator of future growth.

This paper presents two new methods to incorporate
structural anatomic information into the FMT reconstruction
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process which address the issues outlined above. Both ap-
proaches make use of a linear operator which establishes an
appropriate relationship between voxels in the high resolution
structural image and voxels in the lower resolution FMT solu-
tion space. An initial parameterized solution is then obtained
to recover a single reconstruction value for each anatomical
region. Our first method uses this information to construct
a spatially varying regularization term which penalizes each
voxel individually based on its association with the under-
lying anatomical regions. By regularizing regions of lower
importance more heavily than those of greater importance,
we are able to compute images which more accurately reflect
ground truth.
Our second method looks at a classical statistical in-

terpretation of the regularized least squares problem. It is
well known that Tikhonov regularization with a smoothness
penalty is equivalent to a maximum a posteriori estimation
method in which the prior model is assumed to be Brownian
motion, that is, a white noise driven diffusion process. We
introduce a modified form of the diffusion equation which en-
codes the segmentation information as regions connected by
specified boundary conditions. The regularization functional
(equivalently, the covariance matrix of the modified diffusion
process) then provides a penalty to the inverse problem in
which edge information is treated in a more ”relaxed” man-
ner than is typically the case. The goal is to avoid the need to
make hard decisions about voxel membership when segmen-
tation results may not be correct. In addition to providing a
new technique for analysis and interpretation of regularization
operators, this method allows for the potential incorporation
of complex regularization structures which would not other-
wise be intuitively evident. We demonstrate both methods
through their application to the inversion of data simulating
the detection of fluorochrome within the murine chest cavity.

2. METHODOLOGY
2.1. Problem Definition
For source-detector separations of more than a few millime-
ters, the propagation of photons within tissue can be modeled
using the diffusion approximation [5]. Green’s functions so-
lutions to this equation are available in closed form for simple
geometries, and via numerical approaches such as the finite
element method (FEM) for more complex systems. For flu-
orescence imaging, use of the normalized Born ratio, which
normalizes received fluorescence measurements by their cor-
responding excitation measurements, in conjunction with the
first order Born approximation, allows for a single linear sys-
tem to relate the normalized data signal to the underlying
physical distribution of fluorochrome [6]:

b = Ax + n. (1)

Here b is the collected data A is the linearized forward oper-
ator, n is measurement noise, and x is the vector of fluores-
cence concentrations to be recovered. The inverse problem,

that of using b to recover the value of x, is typically solved as
a regularized least squares problem:

x̂ = argmin
x
‖Ax− b‖22 + λ‖L(x− μ)‖22 (2)

for some regularization matrix L and a vector of mean values
μ. The regularization parameter λ is then selected for each
individual data set using techniques such as the L-Curve.
While the regularization matrix can be as simple as the iden-
tity, more complex matrices can impose prior knowledge
about the structure of the solution.

2.2. FMT-CT Image Relationships
As previously stated, structural information available from
CT images is typically of a higher physical resolution than
is possible with FMT systems. Because of this, each voxel
in the FMT reconstruction space will occupy the same space
as several voxels in the anatomical segmentation. Attempting
to simply label each FMT voxel with a single tissue type is
liable to lead to labeling errors that will then be reflected in
the resulting reconstruction.
A more appropriate model is to assume the existence of a

solution xct, which is a map of the fluorescence distribution
at the same resolution as the CT image. A matrix, denoted
here as C2

1
, can then be constructed which maps full or frac-

tional voxels at the CT image scale (Resolution 1) to voxels
at the FMT image scale (Resolution 2). Elements of C2

1 are
computed as: (

C2

1

)
i,j

=
vj∈i

vi
(3)

with vj∈i being the volume of CT voxel j that lies within
FMT voxel i, and vi being the total volume of that FMT voxel.
This matrix will be used in both the techniques which follow.

2.3. Spatially Varying Regularization
Our initial method for using structural information is to build
a regularization functional which penalizes individual voxels
based on their segmentation membership. We first construct a
reduced dimensional problem parameterized along the bound-
aries of the anatomical segmentation. The assumption is that
the solution to this problem will provide information regard-
ing which physical regions are most likely to contain fluo-
rescence. Regions of low fluorescence probability are then
penalized more than regions of high probability, to damp out
unwanted artifacts and encourage solution values to be local-
ized within the appropriate regions.
To implement this idea, we built an inverse problem based

on the previously described matrix relating CT and FMT im-
age scales. To obtain a single value for each segment, we in-
troduce an additional matrix C1

0
, which maps the values asso-

ciated with each region onto the appropriate CT image voxels.
Thus, the matrix C2

0 = C2

1C1

0 will map these values onto the
FMT image space. This assumes a spatially constant model
for the fluorescence within each region, with the columns of
C2

0
being indicator functions for the different segments, and
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μ being the vector of mean values. We then construct a least
squares inverse problem as:

μ̂ = arg min
μ
‖b−AC2

0
μ‖2

2
(4)

and solve it using a non-negatively constrained steepest de-
scent algorithm [7].
As a measure of the relative importance of each region,

we compute the reduction in residual error induced by each
of the individual segmented regions:

ej = ‖b− (AC2

0
)∗jμj‖

2

2
(5)

where (AC2

0
)∗j is column j of the matrix (AC2

0
). In order

to make these terms consistent across data sets, they are nor-
malized to generate the values γj = ej/ max(ej|∀j). Con-
struction of a spatially varying diagonal regularization matrix
proceeds as:

L = diag(C2

0 [γ1γ2 . . . γN ]T ) (6)

This matrix is used in conjunction with a mean vector set to
zero to solve (2) and obtain the final reconstructed image.
Figure 1 shows an example of this method being applied

to the the problem of localizing lung inflammation within the
murine chest cavity. Simulated data was generated on a real
animal geometry using the image shown in Fig. 1a, to which
10% shot noise was added. A reconstruction regularized with
the identity matrix is shown in Fig. 1b. Fig. 1d shows a
reconstruction using the new method, with which the shape
of the resolved anomaly is resolved more accurately, and the
absolute error in the image is reduced by 6% compared to
the identity matrix regularization. Compared to the recon-
struction with a LaPlacian regularizer as shown in 1c, this
technique has a 2% increase in error, but provides a superior
match to the structure of the image. Regularization parame-
ters were selected to minimize the absolute image error.
2.4. Differential Equations as Regularizers
A well known interpretation of Eq (2) is as a maximum a pos-
teriori solution assuming that the image x is Gaussian distrib-
uted with mean vector μ and covariance matrix (λ2LT L)−1.
Typically however, the construction of L does not take this
directly into account, and μ is left as a vector of zeroes. L is
then built to explicitly minimize image traits such as the local
gradient or Laplacian. While this can quickly encode simple
image constraints, more complex relationships are possible
for which the appropriate regularization structure may not be
readily evident.
To help enable more complex regularization for diffusion

and other inverse problems with prior structural segmenta-
tions, we propose an alternative method for the generation and
analysis of covariance (regularization) matrices. Rather than
explicitly construct the regularization matrix, we allow it to
arise implicitly from the construction of a differential equa-
tion governing the behavior of the solution image. Specifi-
cally, a stochastically driven, anatomically based differential

equation is considered. Parameters for the equation are ob-
tained using the low dimensional inverse solution described
above. To incorporate relationships between anatomical re-
gions, boundary conditions are established for each set of
neighboring regions. From this, a discretized version of the
equation can be written as a linear system, which is then in-
verted to obtain an expression for the image in terms of the
discretized differential operator and the driving noise process.
As an initial example with the potential for wide applica-

bility, we assume that within each anatomical region Ωm the
solution x(r) should obey the differential equation:

α(Ωm)∇2x(r) = wm(r) (7)

where α(Ωm) is a smoothness constraint on each region,
and wm ∼ N(0, σ2

mI) is a zero mean Gaussian white noise
process with variance σ2

m. At the boundary of each region,
we impose the constraint:

β(Ωp, Ωq)n̂ · ∇x(r) = β(Ωp, Ωq)wb(r) (8)

where wb ∼ N(μb, Σb) is a second vector of independent
Gaussian variables, with non-zero mean vector μb and non-
uniform variances. A zero boundary condition is used at the
external boundary of the medium. The parameter β(Ωp, Ωq)
controls the weight of the boundary condition between re-
gions Ωp and Ωq with respect to the primary differential op-
erator without affecting the boundary condition itself. Mean
values for wb(r) are computed as the difference between the
means of the two adjoining regions, as determined using our
parameterized solution. Variances for both wm(r) and wb(r)
are determined, based on a shot noise model, assuming that
the voxels within each region have a variance equal to their
mean.
The above differential equation is discretized in 2D using

an 8-neighborhood for the primary differential equation and a
4-neighborhood for the boundary condition. Elements of the
discretized equation matrix are thus generated as:

Wi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
∑

k �=i Wi,k : i == j

α(Ωp) : xj ∈ Neighbors8(xi) &
: {xj , xi} ∈ Ωp

β(Ωp, Ωq) : xj ∈ Neighbors4(xi) &
: {xj} ∈ Ωp, {xi} ∈ Ωq

(9)
This allows us to then write an equation for the image x in
terms of the noise processes wm and wb:

x = W−1(wm + wb). (10)

This, in conjunction with Σw = σ2

mI +Σb, lets us express the
imagex statistically as x ∼ N(W−1μw, (W−1)Σw(W−1)T ).
Given this prior for x, the MAP inverse solution is then:

x̂ = arg min
x
‖b−Ax‖2

2
+ λ2

∥∥∥Σ−1/2

w WT (W−1μw − x)
∥∥∥

2

2

(11)
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Fig. 1. Reconstructions of Simulated Fluorescence within an Artifi-
cial 2D Geometry: a) Original Fluorescence Image b-e) Reconstruc-
tions Regularized with: b) Identity Matrix c) Global LaPlacian d)
Varying Regularizer e) Differential Equation Based Regularization.

Figure 1d shows this method being applied to the previ-
ously described simulation experiment. For this case, we have
taken α(Ωj) = 1 ∀Ωj and β(Ωp, Ωq) = 0.1 ∀Ωp, Ωq.
Compared to the other two methods, this technique more ac-
curately identifies the fluorescent inclusion, and delineates it
from the background. Numerically, our solution has a 16%
decrease in solution error as compared to the solution regu-
larized with the identity, and a 9% decrease as compared to
our first method. Compared to the LaPlacian, a 6% decrease
in error is seen.

3. CONCLUSIONS

Multimodal techniques offer the potential for significant
improvements in diffusion based optical imaging. Using
anatomical structure, these methods guide the formation of
tomographic images to improve both spatial fidelity and
quantitative accuracy. Existing methods tend to incorporate
this structure in a manner which does not necessarily make
optimal use of the available information. By using the data
to aid in the construction of the regularization term and syn-
thesizing differential equation based regularization operators,
we hope to move towards better use of anatomical structure,
and greater integration between the tomographic problem and
knowledge about the underlying biological processes.
Our first step was to build a low dimensional parameter-

ized problem from which we obtained a single value for each
anatomical region. Our initial method used these values to
create a regularization operator customized to the collected
data and anatomical structure of the experiment. Each voxel
was individually regularized based on the importance of the
underlying anatomical regions. As seen in our example, this
has the capacity to improve solutions by helping to localize
them within the appropriate physical regions.
The parameterized solution also served as a basis for our

second approach, which built a differential equation to gov-
ern the behavior of the inverse solution. A statistical prior

model for the image was implicitly defined by this equation,
and was used to shape an appropriately regularized inverse
problem. While the equations used here are a simple example
to illustrate the potential of viewing regularization operators
in this framework, they have the potential to be used in more
complex situations. The final paper and talk will examine the
use of these techniques in situations with incomplete or er-
roneous boundary information, as well as the incorporation
of tissue dependant smoothing and boundary conditions, and
their effects upon the resulting solutions.
We note that our framework allows for other possibilities

beyond basic differential equations. If the target fluorochrome
is known to behave in a specific pharmacological manner, one
could use a mathematical model of that behavior to regularize
the solution, while maintaining some robustness to the hy-
pothesized segmentation. Thus, rather than penalizing based
on some generalized characteristics of the solution image, the
fluorescence tomography problem could be coupled both to
the anatomy and underlying biochemical processes in a sta-
tistically controlled fashion.
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